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Abstract

Uncertainty is omnipresent. While humans and other animals take uncertainty into account during
decision making, it remains unclear how it is represented in cortex. To investigate the effect of stim-
ulus reliability on uncertainty representation in cortical neurons, we analyzed single unit activity data
recorded in mouse PPC, while animals performed a multisensory change detection task. We further
used simulation-based inference (SBI) to infer membrane potential statistics underlying the spiking ac-
tivity. Our analysis shows that stimulus changes increase spiking rate while decreasing its variability.
The inferred membrane potential statistics suggest that PPC neurons decrease their membrane potential
variability in response to task relevant stimuli. Furthermore, more perceptually reliable stimuli lead to
a larger decrease in membrane potential variability than less reliable ones. These findings suggest that
individual cortical neurons track uncertainty, providing Bayesian benefits for downstream computations.

Introduction

The brain needs to make sense of the world based on noisy, unreliable, and ambiguous information. We
experience this when having a conversation in a noisy room, finding our way in the dark or trying to pick
our bicycle from a crowded rack. To reduce uncertainty we automatically incorporate information from
additional sources; we look at people’s lips while they speak (Sumby and Pollack, 1954), use our hands to
feel our environment in the darkness (Ernst and Banks, 2002), and use our memory to recall where we left the
bike. To achieve these feats, our brain must represent and compute with the relative uncertainty associated
with sensory percepts and prior knowledge.

This idea is often formalized using Bayesian principles, suggesting that the brain represents and computes
information using probability distributions, for example, computing a posterior probability of a given event
(Jaynes, 2003). Indeed a large body of work suggests that humans and animals take stimulus- and prior
uncertainty into account when performing tasks such as coincidence detection (Miyazaki et al., 2005), gaze
direction perception (Tassinari et al., 2006; Landy et al., 2012) and dynamic sensorimotor tasks (Faisal
and Wolpert, 2009; Fetsch et al., 2009; O’Reilly et al., 2013; Meijer et al., 2019). Moreover, maladaptive
uncertainty weighting of sensory and prior information has been linked to neurological disorders such as
autism spectrum disorder and schizophrenia (Lawson et al., 2014; Van de Cruys et al., 2014; Goris et al.,
2018; Stevenson et al., 2014; Noel et al., 2018). Understanding how the brain represents and computes with
the uncertainty linked to different sensory perceptions is key to understanding cortical computation.

The posterior parietal cortex (PPC) has been identified as a hub for integrating information from different
sensory modalities. Neurons in PPC have been found to respond to visual, auditory and somatosensory
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inputs (Raposo et al., 2012; Olcese et al., 2013; Mohan et al., 2018; Nikbakht et al., 2018). Indeed, the
response of multisensory neurons to cross-modal stimulation is enhanced compared to the most effective of
the individual stimuli (Stein and Stanford, 2008). Moreover, the strength of this “multisensory enhancement”
depends crucially on several factors such as the temporal congruency (Meijer et al., 2017) and the perceptual
strength of the individual stimulus components (Ibrahim et al., 2016). Such effects are expected from a
Bayesian perspective: temporally proximal cues are likely to be informative of each other, and weaker cues
leave more room for gaining additional information than strong cues. However, the mechanisms underlying
this integration of information at the level of single neurons, and how information from different sources are
weighted are still not well understood.

Single deep-layer cortical neurons receive bottom-up (Song et al., 2017) input driven by different sen-
sory modalities and top-down input from higher order areas (Larkum, 2013; Rindner et al., 2022). They
thus make an excellent substrate for combining novel sensory information with prior expectations. A recent
theory (Jordan et al., 2021) offers a novel view on the dynamics of individual cortical neurons and suggests
that they may be optimally suited to perform Bayes-optimal integration. This theory proposes that con-
ductances play an important role in neuronal computation by allowing microscopic dendritic compartments
to represent distributions with local, biophysical quantities. It suggests that neurons represent likelihood
functions and priors in basal and apical dendrites respectively, while the soma computes the corresponding
posterior distribution (Figure 1a). Specifically, the local effective reversal potential, the potential to which
the membrane potential is pulled by synaptic inputs, represents the mean, while the sum of local excitatory
and inhibitory conductances represent the precision of a Gaussian likelihood in each basal compartment.
Intuitively, increasing synaptic conductances, e.g., by upstream stimulation, increase the pull towards the
effective reversal potential. As this effect propagates to the soma it reduces sensitivity to unspecific back-
ground input. Computationally, this can be interpreted as sharper likelihood functions resulting in sharper
posteriors. Biophysically, the variability of the somatic membrane potential is proportional to the posterior
uncertainty. In line with a Bayesian view of brain function, the theory predicts that since new informa-
tion reduces uncertainty, it also decreases membrane potential variability; furthermore, it predicts that the
magnitude of this decrease is proportional to stimulus reliability. Finding evidence for such Bayesian pro-
cessing at the single neuron level represents a promising step towards understanding how the brain deals
with perceptual uncertainty.

Here, we investigate neuronal responses in mouse PPC to uni- and multimodal changes of different mag-
nitude in continuously presented auditory and visual stimuli (Figure 1b). First, we analyze how interspike
interval statistics differ between pre and post stimulus change periods. Next, we infer and analyze membrane
potential statistics underlying these spiking responses using simulation-based inference (SBI). Finally, we dis-
cuss our findings in the context of Bayesian computations in single neurons, and suggest future experiments.

Methods

Experimental Data

The data used in this study was collected to investigate the causal involvement of PPC in performing an
audio-visual change detection task. For complete experimental details we refer to Oude Lohuis et al. (2022).
All code used is openly accessible 1.

Animals. Animal experiments were carried out in accordance with Dutch national legislation and
institutional regulations. In total, 19 male mice were used from two transgenic mouse lines; PVcre (JAX
008069) and ai9-TdTomato cre-reported mice (JAX 007909). Mice were housed under a reversed day-night
schedule (lights were on from 20:00PM until 8:00AM). As mice are nocturnal, experiments were performed
during the dark period. Animals were aged at least 8 weeks at the beginning of the experiments.

Head bar implantation. Animals were implanted with a head bar prior to experimentation. Animals
were anesthetized using isoflurane (3% for induction, 1.5 − 2% for maintenance) and fixed in a stereotaxic
apparatus. After exposing the animals skull, a circular titanium head bar was glued and cemented to it.
Mice were given 2−7 days to recover following surgery. Prior to the training procedure mice were habituated
to the head fixation and the handling of the experimenter. A subset of animals underwent additional surgery
to virally infect individual areas for opsin expression for optogenetic manipulations. However, data collected
during sessions with optogenetic manipulations were not used in this study.

Audiovisual change detection task. Mice were deprived of water and earned their daily ration by
performing the behavioral task. Lick spouts were positioned within tongue reach symmetrically on the left
and right side of the head-fixed animals. Auditory and visual stimuli were presented continuously throughout
each behavioral session (Figure 1b).

1https://github.com/unibe-cns/reliable-membranes
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Figure 1: Perceptual reliability-weighted integration of sensory information in mouse PPC. (a)
Conductance-based Bayes-optimal cue integration. According to Jordan et al. (2021), individual cortical neurons
integrate novel (bottom-up) input with prior information (top-down) in a Bayes-optimal way at the level of somatic
membrane potentials. Traces illustrate simulated membrane potentials of each compartment. The curves (right) rep-
resent the likelihood (basal dendrite, orange), prior (apical dendrite, grey), and posterior distribution (soma, green)
pre- and post-stimulus. The presentation of novel information at 0 ms causes sharpening of the likelihood which
reduces uncertainty in the posterior. (b) Behavioral task. A visual (drifting grating) and auditory (Shepard tone)
stimulus were presented continously. Mice learned to report changes in either grating orientation (“V” trial, lick
right), tone frequency (“A” trial, lick left) or both (“AV” trial, lick either side). Stimulus changes occurred either
at maximum or threshold magnitude. (c) Single-unit activity was measured in mouse PPC. The image represents a
reference section (Paxinos and Franklin, 2019) overlaid on the histologic verification with DAPI staining (blue) and
electrode tract stained with DiI (red). LPtA, Lateral parietal association area; V2L lateral secondary visual cortex.

The visual stimulus consisted of a drifting square-wave grating with a temporal frequency of 1.5 Hz and a
spatial frequency of 0.08 cycles per degree at 70% contrast. The auditory stimulus was a stationary Shepard
tone (Shepard, 1964), consisting of a center tone combined with its two lower and higher harmonics. Center
tones used throughout the experiment ranged a one octave from 213 Hz (8, 372 Hz) to 214 Hz (16, 744 Hz).
The weight of the center and harmonic tones were taken from a Gaussian distribution over weights, here
centered at 213.5 Hz (11, 585 Hz). Tones were high-pass filtered (Beyma F100, Crossover frequency of 5− 7
kHz) and presented at a sampling rate of 192 kHz using two bullet tweeters (300 W) positioned directly
below the screen. The sound pressure level was calibrated at the position of the mouse, and the volume was
adjusted per mouse to the minimum volume that maximized performance (on average around 70 dB).

In visual change trials (“V trials”), the orientation of the drifting grating was instantaneously changed
while preserving the phase. Likewise, in auditory change trials (“A trials”) the stimulus was instantaneously
changed from one Shepard tone to another, with different center frequency and associated harmonics. An-
imals were trained to respond to changes in a lateralised manner (A trial: lick left, V trial: lick right).
Modality-side pairing was counterbalanced across mice. Thus, to successfully perform the task, the animal
had to monitor both auditory and visual modalities to detect changes in either.

During training, trial types were ordered pseudo-randomly by block-shuffling; consecutive blocks of 10
trials each were comprised of randomly ordered trial types in a fixed proportion (8% catch, 46% V trials, 46%
A trials). During testing, audio-visual change trials (“AV trials”) were introduced, where both auditory and
visual stimuli changed (8% catch, 33.5% A trials, 33.5% V trials, 25% AV trials). AV trials were rewarded
for the first lick on either side. Thus, in contrast to A and V trials, cues in AV trials were not informative
about the response they should elicit.

Additionally, to manipulate their perceptual reliability, changes in either of the two modalities were
delivered either at perceptual threshold or at maximum magnitude. The perceptual threshold for each
modality was determined for each animal separately by fitting a psychometric function over the accuracy
achieved across five levels of stimulus change magnitude. In trials with an auditory change, the center
pitch changed by 1/10th of an octave in threshold and a full octave on in maximum change trials. In trials
with a visual change the movement orientation changed by 4 − 7 degrees in threshold and 90 degrees in
maximum change trials. Consecutive trials were separated by inter-trial intervals sampled randomly from an
exponential distribution with a mean of 6 s, a minimum of 2 s and maximum of 20 s. Following a stimulus
change, mice were rewarded if the first lick after 100 ms and before 1500 ms was made to the correct side.
Sessions were terminated after 20 trials of unresponsiveness, with these last 20 trials being discarded from
all analyses. Mice achieved a median reaction time of 324 ms across auditory and 407 ms across visual hits.

Neural recordings. Mice were anesthetized (isoflurane, induction at 3%, maintenance at 1.5–2%)
and small craniotomies (approx. 300 − 500 µm) over the areas of interest were made using a dental drill.
Areas of interest were identified based on stereotaxic coordinates (V1: AP 0.0, ML ±3.0, PPC: AP 1.9,
ML ±1.6, AC: AP 2.6, ML ±4.3, relative to lambda and bregma, respectively) (Goard et al., 2016; Song
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et al., 2017; Le Merre et al., 2018). Extracellular recordings were performed on consecutive days with a
maximum of four days to minimize cortical tissue damage. Microelectrode arrays (Figure 1c) with 32 or
64 channels (NeuroNexus, A1x32-Poly2-10 mm-50s-177, A1x64-Poly2-6 mm-23s-160) were slowly inserted
either perpendicularly to the cortical surface (V1), or at an angle of approximately 30 degrees away from
the midline (AC) After insertion, the probe was left in place for at least 15 min before recording to allow
the tissue to stabilize. To identify the exact probe location post hoc, the probe was covered in Dil (Thermo
Fisher Scientific) on the final day of recording. Neurophysiological signals were pre-amplified, bandpass-
filtered (0.1 Hz to 9 kHz) and acquired continuously at 32 kHz using a Digital Lynx 128-channel system
(Neuralynx). Post experiment, mice received an overdose of pentobarbital, were transcardially perfused (4%
PFA in PBS) and their brains were extracted.

Neurophysiological data processing. Spike sorting was performed using Klusta software and manu-
ally curated using the Phy GUI (Rossant et al., 2016). Prior to spike sorting, common noise artifacts were
eliminated by subtracting the median of the raw trace of surrounding channels (within 400 mm). Each
potential single unit was inspected based on its waveform, autocorrelation function, and firing pattern across
channels and time. Single units were only included if they met the following criteria: (1) isolation distance
> 10 (Schmitzer-Torbert et al., 2005); (2) 0.1% of their spikes occurred inside the 1.5 ms refractory period
(Vinck et al., 2016; Bos et al., 2017); and (3) stable presence throughout the session. To asses stability the
session-wise activity was binned and single units were considered stable if they fired in at least 90% of bins.

Pre-processing. We split the trial-wise activity into a pre- and post-stimulus period. The pre-stimulus
period spanned the 1500 ms before the stimulus change, while the post-stimulus period covered 200 ms to
1700 ms after the change. Due to transient responses in the initial 200 ms post-stimulus, we excluded this
interval to better capture sustained within-trial statistics following stimulus onset.

Accordingly, we summarised the trial-wise spiking activity in each period by computing the mean and
standard deviation of the inter-spike interval statistics (ISI, µs, σs). Note that this summary statistic assumes
that the ISIs are unimodally distributed and thus would not adequately describe bimodal distributions. We
thus quantified the amount of bursting within each spike train (Chen et al., 2009) and removed spike trains
with excessive bursting (see also Supplementary Figure 2). Finally, as the inference procedure is less accurate
for spike trains with fewer spikes (see also section Supplementary Figure 3), we only included trials with
at least 10 Hz in both pre- and post-stimulus change periods in our analysis. Note that this may bias
the sample towards neuron types associated with higher firing frequencies, namely interneurons and deep
cortical pyramidal neurons (Contreras, 2004). After filtering, 4170 trials collected from 83 neurons in 6
animals remained for subsequent analysis (V = 1674, A = 1663, AV = 524, catch = 309; non-catch trials
balanced across max and thresh change magnitudes).

Simulation-Based Inference (SBI)

SBI can be used to efficiently compute an approximate posterior distribution in cases where the likelihood
function is intractable, e.g., stochastic simulations. This is achieved by leveraging universal function ap-
proximators to represent distributions (Tejero-Cantero et al., 2020). A typical application of SBI proceeds
as follows: First, we choose an appropriate mechanistic model and a prior distribution over its parameters
(see Figure 2). Next, we simulate the model with random samples from the prior distribution and record
observations. We then train a density estimator to map recorded observations to the underlying parameters.
Finally, we can use our trained density estimator to compute approximate posteriors over parameters for new
observations, in our case spiking data obtained from experiments. We used SBI to infer membrane potential
statistics of biological neurons by inverting the dynamics of leaky-integrate and fire (LIF) neurons using
Sequential Neural Posterior estimation (SNPE; Greenberg et al., 2019). We implemented the SBI workflow
using the sbi toolbox2 in Python.

Mechanistic model. We chose the leaky-integrate-and-fire (LIF) neuron model due to its simplicity,
ease of simulation, and common use in neuron modelling. Its dynamics is given by

τm
dV

dt
(t) = −(Vm(t)− EL) +RI(t) , (1)

with the additional threshold condition

if Vm(t∗) ≥ Θ→ V (t∗ + δt) = Vreset ,

and emit spike with timestamp t∗ .

Here, Vm is the neuron’s membrane potential, τm the membrane time constant, EL the reversal potential
of the leak current, R the membrane resistance, Θ the spiking threshold and Vreset the reset potential. Due

2www.mackelab.org/sbi/
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Figure 2: Simulation-based inference (SBI). SBI is a method for recovering the hidden parameters underlying
novel observations. (1) A single sample (red cross) from the prior distribution over the parameters (θ) of the
mechanistic model. (2) Using this sample, observations x are generated by (stochastic) simulation. (3) The parameters
and observation pairs are then used to train a density estimator to learn an approximate posterior distribution p(θ|x),
i.e., to invert the simulation probabilistically. (4) The trained density estimator is used to infer a posterior distribution
over the underlying parameters of a novel observation (xo). Here, SBI was used to infer the parameters θ = (µI, σI)
of the input current I underlying the observation generated from a single spike train x = (µlog

s , σlog
s ,Ns).

to the spiking mechanism a hard threshold on the membrane potential with subsequent reset, the membrane
potential statistics of a LIF neuron are difficult to parameterize directly (Petrovici et al., 2016). Here we
instead chose to parameterize an input current with Gaussian noise

I(t) ∼ N (µI, σI) , (2)

with mean µI and standard deviation σI. This current subsumes all synaptic inputs to the neuron. All
network simulations were carried out with NEST3 (Gewaltig and Diesmann, 2007; de Schepper et al., 2022).

Parameter prior. The prior defines the space of parameters used to simulate the mechanistic model.
It thus implicitly defines the support (bounds) of the posterior distribution. We initialized the prior as a
uniform distribution over the range [−2 pA, 2 pA] for the mean µI of the injected Gaussian noise current,
and [0 pA, 30 pA] for its standard deviation σI. The prior was then iteratively restricted by removing parts
of the parameter space that yielded no or excessive firing. Here we define “excessive firing” as firing rates
larger than the maximum observed in the data.

Observables. Spike trains were the common quantity produced by simulations and experiments. Here,
we summarized an individual spike train using the empirical mean, standard deviation and raw number of
spikes (µlog

s , σlog
s , Ns) of the log inter-spike interval (ISI) distribution (Figure 3a,b). We chose a summary

statistic because we did not want to infer parameters that reproduce the exact spike times but only the spiking
statistics. We log transform ISIs because it reduces the posterior uncertainty of our inference procedure.

Training. We trained a density estimator (Lueckmann et al., 2019; Papamakarios et al., 2019) to learn
the mapping from observations to current parameters. To generate training data, i.e., parameter/observation
pairs, we sampled parameters from the restricted prior distribution, performed a simulation of the neuron
model and computed the respective observation from the simulation output. We simulated each neuron for
2000 ms, the first 500 ms of which were discarded to allow the neuron to reach its steady state. The spiking
activity in the remaining 1500 ms was recorded. We generated and trained the mixed density estimator on
150, 000 parameter/observable pairs.

Validation. To validate our learned density estimator, we sampled 20, 000 parameter pairs, not seen
during training, from the prior. We simulated each parameter pair and recorded the observations. Next we
performed the inference procedure for each simulated observation and computed the difference between the
inferred and the original parameters. To determine the influence of the number of spikes on inference quality,
we computed the errors separately for varying spike count. We found that the inference procedure was biased
towards underestimating µI while overestimating σI at firing rates below 10 Hz (see also Supplementary
Figure 3). This lower boundary of 10 Hz was used as an exclusion criterion for recorded trials.

3www.nest-simulator.org
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Figure 3: Inferring intracellular quantities from spike trains. (a) Single PPC neuron spiking activity recorded
during successive trials separated into pre- and post- stimulus change spiking activity. Colors denote trials from
different conditions (see Figure 1). (b) Inter-spike interval (ISI) statistics. Each spike train is summarized by
the mean and standard deviation of its log ISI distribution. (c) Inferring trans-membrane currents. The density
estimator trained with SBI is used to infer an approximate posterior distribution over input current parameters from
each observation (µs, σs). For subsequent analysis we collapse this distribution to its most likely values (grey cross).

Inference. To infer the parameters underlying single recorded spike trains we conditioned the posterior
on a single observation. We collapse this distribution to its most likely value to obtain the parameters most
likely underlying the observation (Figure 3c). In a final step we translated these current parameters to
membrane potential statistics by simulating a neuron with the inferred parameters (µI, σI) and recording
the membrane potential traces from which we can compute the relevant statistics (µu, σu, where u indicates
that this is a quantity relating to membrane potentials).

Statistical Analysis

We used linear mixed modelling (LMM) in SPSS 29.0 to investigate the effect of change magnitude and
modality both on the ISI and the inferred voltage statistics. We chose LMMs because they are robust
to imbalanced designs and are able to account for the nested structure of the data (Aarts et al., 2014).
LMMs describe the relationship between a response variable and multiple explanatory variables of two
types; fixed effects are the independent variables (change magnitude, modality) whereas random effects are
grouping variables that account for the nested structure of the data. Here, the nested structure arose due
to repeated trials across conditions from the same animals. In our statistical model, we defined modality
and change magnitude as our fixed effects and included animal identity as our random effect. We chose a
covariance structure whereby the intercept for each animal was allowed to vary freely. We did not include the
neuron identity from which trials were recorded as a nested random effect within animals as the sometimes
limited number of trials recorded per neuron (> 5) meant intercepts could not be estimated reliably and
the model would not converge. For our dependent measure, we computed the change both for the recorded
ISI statistics (∆µs = µpost

s − µpre
s ,∆σs) and the inferred membrane potential statistics (∆µu,∆σu). The

following statistical model was fitted for each of these dependent measures y ∈ {∆µs,∆σs,∆µu,∆σu}:

yij =β0 + β1magnitudeij + β2modalityij + β3(modality×magnitude)ij + β0i + εij . (3)

Here yij is the jth observation within the ith animal. The overall intercept (bias) is denoted by β0. The
coefficients β1, β2 and β3 correspond to the coefficients for magnitude, change modality and their interaction
respectively. β0i denotes the random intercept for each animal and εij represents the residual error. For
main effects we report the F-test as F(df1,df2) = F where df1 and df2 indicate the between- and within-group
degrees of freedom respectively.

Results

ISI Statistics

We first analysed the effects of stimulus change and magnitude on the ISI statistics recorded during pre-
and post-change period in mouse PPC (Figure 4a,b). Here, we expected stimulus changes to results in a
decrease in within-trial spiking variability. Indeed, we found that across all conditions stimulus change led
to a decrease in the mean inter-spike interval (F(1,7.4) = 31.72; p < 0.001) and a decrease in the standard
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Figure 4: Effect of stimulus change on within trial ISI and inferred membrane potential statistics. (a)
The difference in post- and pre- stimulus mean (µs) and (b) standard deviation (σs) of the recorded inter-spike interval
distributions across change modalities and for (T)hreshold and (M)ax change magnitudes. (c) The difference in post-
and pre- membrane potential mean and (d) standard deviation (right) as inferred by SBI. Error bars indicates SEM
and *, ** and *** indicate significance at the 0.05, 0.01 and 0.001 levels respectively.

deviation of the inter-spike interval (F(1,3.9) = 23.92; p = 0.008). Further, we expected that larger change
magnitudes would have a stronger effect on neural activity. While maximum change trials appeared to have
a lower µs than threshold trials, this difference was not significant. However, max change trials showed a
stronger decrease in σs than threshold change trials.

Further, we expected a difference between uni- and multi-modal stimulus changes as unimodal stimuli
were matched for intensity. While a trend in this direction could be observed, AV trials did not differ
significantly from unimodal A and V trials on the change in the mean or standard deviation of the ISI
statistics. One reason for this could be that we are lacking statistical power due to the smaller number of
AV trials compared to A and V trials. In correct rejection (catch) trials we did not observe a significant
change in the ISI statistics between pre and post change (one sided t-test; ∆µs, p = 0.282, ∆σs p = 0.257,).

Table 1: Effect of stimulus change on ISI statistics

Conditions Mean difference Standard Significance CI95%
(a vs b) (a - b) Error [lower, upper]

∆µs Max vs Thresh −0.830 0.695 0.233 [−2.193,−0.533]
A vs V 0.398 0.647 1.000 [−1.151, 1.848]

AV vs A −1.312 0.945 0.496 [−3.576, 0.952]
AV vs V −0.913 0.944 1.000 [−3.174, 1.347]

∆σs Max vs Thresh −3.196∗∗∗ 0.991 0.001 [−5.140,−1.253]
A vs V 0.502 0.922 1.000 [−1.708, 2.707]

AV vs A −2.914 1.354 0.094 [−6.156, 0.328]
AV vs V −2.412 1.351 0.223 [−5.648, 0.824]

Membrane potential statistics

Next, we analysed the membrane potential statistics underlying these changes in spiking statistics as inferred
using SBI (Figure 4c,d). We expected, in line with the theoretical prediction, that a stimulus change would
be associated with a decrease in the membrane potential variability. Indeed we found that stimulus change
led to an increase in the mean membrane potential (i.e., a depolarization) (F(1,4.3) = 30.804, p = 0.003)
and a decrease in the membrane potential variability (F(1,5.2) = 30.798, p = 0.002). Furthermore, we found
that this effect of stimulus change associated increases in µu and decreases in σu was larger in maximum
than in threshold change trials. Finally, we analysed the effect of change modality on membrane potential
statistics. The comparison of uni- and multimodal change trial effects shows that AV trials led to a larger
mean depolarization than A but not V trials.

That the above observed increase in firing (decrease in µs) is associated with a decrease in σu is unexpected
in light of our mechanistic neuron model. This is because in the fluctuation driven regime (Kuhn et al., 2004)
larger σu will make it more likely for the membrane potential to reach threshold, leading to an increase in
firing. However, this finding aligns with the prediction that integration of information leads to decreases in
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the membrane potential variability. These results support the predictions from Jordan et al. (2021) whereby
individual neurons respond to more informative stimuli, i.e., larger cross-modal changes, by reducing their
membrane potential variability.

Table 2: Effect of stimulus change on membrane potential statistics

Conditions Mean difference Standard Significance CI95%
(a vs b) (a - b) Error [lower, upper]

∆µu Max vs Thresh 0.527∗ 0.244 0.031 [0.049, 1.006]
A vs V −0.315 0.227 0.495 [−0.859, 0.229]

AV vs A 1.145∗∗ 0.333 0.002 [0.348, 1.943]
AV vs V 0.830∗∗ 0.332 0.007 [0.034, 1.626]

∆σu Max vs Thresh −0.240∗ 0.118 0.042 [−0.471,−0.008]
A vs V 0.098 0.89 0.810 [−0.115, 0.312]

AV vs A −0.520∗∗ 0.161 0.004 [−0.905,−0.134]
AV vs V −0.363 0.161 0.072 [−0.747, 0.022]

Discussion

Summary & interpretation

Here we investigated the effect of stimulus-associated reliability on the within-trial inter-spike interval and
membrane potential statistics of single neurons in mouse PPC. The stimulus change associated reliability
was manipulated (low vs. high) by adapting the magnitude (thresh vs. max) and modality (A, V vs.
AV). We found that stimulus changes across conditions led to increased and more regular spiking. Further,
our results demonstrate that the reduction in ISI variability was proportional to stimulus reliability, i.e.,
larger (max) stimulus changes led to a stronger reduction. However, we did not observe a multisensory
enhancement (Stein and Stanford, 2008) at the level of spiking statistics. Apart from a lack of statistical
power due to the imbalance in single and multimodal trials, this may be due to the stimulus components
in AV trials not being mutually informative. As animals learned to respond to unimodal change stimuli
in a lateralized way, multimodal stimuli may have led to ambiguity with respect to the desired response
(see Methods). This stands in contrast to previous studies showing multi-modal enhancement where the
integration of cross-modal stimuli was beneficial for task performance (Olcese et al., 2013; Nikbakht et al.,
2018; Meijer et al., 2018). On the other hand, at the level of inferred membrane potential statistics, stimulus
changes across all conditions lead to an increase in the mean and a decrease in the standard deviation of the
membrane potential distribution. Moreover, this effect appeared to be sensitive to stimulus reliability as it
was stronger in multi-modal and maximum change magnitude trials compared to unimodal and threshold
magnitude changes respectively.

Our results suggest that neurons in PPC are sensitive to the stimulus associated perceptual uncertainty
at the level of their membrane potential statistics. Previous work found a whisking-induced reduction of
membrane potential variability in rat primary sensory cortex (Crochet et al., 2011; Yamashita et al., 2013;
Poulet and Crochet, 2019). Although they did not investigate the effect of reliability, these findings are
in line with ours, suggesting that this effect is a widespread cortical phenomenon. Secondly, we show that
the effect is sensitive to the stimulus associated reliability, suggesting that individual neurons track the
stimulus related uncertainty. In light of recent theoretical work (Jordan et al., 2021), this stimulus-driven
reduction can be viewed as a signature of Bayesian computation at the single-neuron level. In a Bayesian
framework, additional information leads to a reduction of uncertainty, explaining the post-change decrease of
variability. Furthermore, more informative (e.g., more reliable or salient) stimuli lead to a larger reduction of
uncertainty and thus to a larger decrease of membrane potential variability. In contrast to previous work, we
thus suggest that the stimulus-driven reduction in membrane potential variability is a consequence of single-
neuron computation, rather than an emergent property at the network level (Sussillo and Abbott, 2009;
Deco and Hugues, 2012). Note that here we focused on within-trial variability, rather than trial-by-trial
variability. While their relationship is complex, a reduction of within-trial variability can cause a reduction
in trial-to-trial variability. We suggest that the well-documented reduction in stimulus-driven trial-by-trial
variability (Finn et al., 2007; Churchland et al., 2010; Wright et al., 2017) could in part be attributed to the
within-trial activity reductions observed here.
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Probing the theory further

In the theory proposed by (Jordan et al., 2021), the stimulus-associated reliability is represented via local
membrane conductances. Future work could apply SBI to a more complex neuron model including transmem-
brane conductances in addition to transmembrane currents. This would account for neuronal morphology
by more accurately covering the effect of both distal (effectively current-based) and proximal (effectively
conductance-based) synapses on the somatic membrane. Explicitly inferring a change in total input conduc-
tance following a change in the stimulus would lend further support to the concept of Bayesian processing
at the single neuron level.

Furthermore, one could separately investigate the reliability-modulated contributions of presynaptic ac-
tivity and synaptic coupling strength to the synaptic conductances. Whereas changes in the presynaptic
rate lead to quick re-weighting across modalities (e.g., Fetsch et al., 2012), changes to the synaptic coupling
reflect more long-term changes. These could be triggered by changes in reward probabilities or changes in
sensory-sensory associations (Knöpfel et al., 2019). Future experiments could disentangle these components
by using SBI together with a model where they are parameterized separately.

Alternatively, inferring intracellular parameters across time, rather than only their time-averaged statis-
tics as we have done here, may allow for distinguishing between different models of biophysical computation.
For example, probabilistic population codes (PPCs; Ma et al., 2006) consider a feedforward integration at
the population level in which the respective efferent synaptic weights determine the relative weight of popula-
tions representing information from different modalities. Similarly, feedback normalization models (Ohshiro
et al., 2011) assign effective “dominance weights” to afferents of multisensory neurons. These models thus
exclusively rely on long-term plasticity to adapt to changes in relative reliability between modalities. In
contrast, the Bayesian-dendrite theory considered here represents reliability via conductances. These are
influenced by both synaptic weights and presynaptic rates and thus allow for rapid adaptation via presy-
naptic modulation of firing rates. Investigating how closely the neurally represented reliability follows rapid
changes in stimulus-related reliability would allow us to differentiate between these model classes.

Proxies for reliability

In this study we manipulated the perceptual reliability of the stimuli by varying the magnitude of the
change. The task-relevant cue consisted of a change in one of two continuously presented stimuli. The
reason we chose stimulus change as our cue (as opposed to stimulus onset) was to manipulate the stimulus
reliability separately from its perceptual intensity. Thus, while larger stimulus changes were more reliably
informative towards the availability of reward, the perceptual intensity, i.e., sound volume or visual contrast,
of the stimuli did not change. However, given that neurons adapt to continuous stimulation (Kohn, 2007;
Ulanovsky et al., 2003) it may be that stimulus change was associated with a perceived change in intensity.
It would be interesting to explore whether the effects observed here are maintained under experimental
manipulations where the stimulus reliability is fully decoupled from, or even inversely related to, perceptual
intensity. Based on Bayesian principles we would expect that, independent of the way reliability is modulated,
increasing reliability should decrease membrane potential variability. Here we only probed two levels of
change magnitude per modality. It would be interesting to investigate whether neuronal responses are
sensitive to more finely graded reliabilities as Bayesian principles would suggest a monotonic decrease of
variability with reliability.

Validation with ground-truth data

Here we used simulation-based inference together with simulations of a LIF model parameterized by a
Gaussian current input to obtain single neuron membrane potential statistics underlying spiking activity.
We validated our approach in simulation by inferring known parameters, both to assess inference quality and
determine the amount of information needed to correctly infer model parameters. To further strengthen the
inference procedure one would ideally compare the quantities inferred from recordings to a ground truth.
This was not feasible in the current work as it would require, simultaneously recorded intra- and extracellular
data which are challenging to obtain, especially over longer periods. In addition to providing a ground truth,
these parameter and observation pairs recorded in vivo could be used to fine tune the density estimator used
for the inference procedure using transfer learning (e.g., Finn et al., 2017). Establishing such ground truth
benchmarks would allow researchers to test model predictions about computationally relevant but difficult
to access quantities in a standardized way.
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Leveraging SBI to test theoretical predictions

Computational theories are often formulated with normative principles and mathematical convenience in
mind. Thus many theoretical predictions pertain to abstract and difficult-to-access quantities. Testing
these predictions in experiments is often not feasible due to cost and time constraints. As demonstrated
here, SBI provides a way to bridge this gap by fitting the relevant quantities in mechanistic neuron models
(Gonçalves et al., 2020). These inferred parameters can then be interpreted to gain valuable insights about
the mechanisms underlying otherwise obscure phenomena. SBI could be particularly useful for testing the
implicit predictions of microcircuit models which describe cortical computation as the product of canonically
arranged groups of neurons (Sacramento et al., 2018; Wilmes and Clopath, 2019; Hertäg and Clopath, 2022;
Haider et al., 2021; Granier et al., 2023).

With SBI, these predictions could be more readily tested based on existing data. For example, a recent
model for how cortical microcircuits may implement efficient learning by approximating the backpropagation
of errors algorithm (Sacramento et al., 2018) suggests that apical compartments receive lateral and top-
down information to compute local errors (Fişek et al., 2023). This prediction is challenging to test as
it requires in vivo recordings from apical dendrites. However, synaptic inputs to cortical pyramidal cells
form a considerable contribution to local field potentials (LFPs) (Einevoll et al., 2013). One could use
SBI together with existing simulation tools for microcircuits and their associated LFPs (Skaar et al., 2020;
Rimehaug et al., 2023) to infer net currents flowing into apical dendrites during task learning. If apical
compartments represent errors, these currents should shrink over the course of learning. Likewise one could
test the prediction by more recent work (Haider et al., 2021) that apical and somatic compartments receive
strongly correlated inputs.

Conclusion

In this work we investigated how cortical neurons respond to uni- and multi-modal stimuli associated with
varying perceptual reliabilities. We demonstrated that task relevant information decreases variability both
on the spiking as well as the inferred membrane potential level. As predicted by a recent Bayesian model
of single neuron computation we found a reduction in variability in proportion to the stimulus associated
reliability. Our results shine new light on the representation of uncertainty in cortex and suggest that
individual cortical neurons keep track and compute with uncertainty.
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